We present DualNER, a simple and effective framework to make full use of both annotated source language corpus and unlabeled target language text for zero-shot cross-lingual named entity recognition (NER). In particular, we combine two complementary learning paradigms of NER, i.e., sequence labeling and span prediction, into a unified multi-task framework. After obtaining a sufficient NER model trained on the source data, we further train it on the target data in a {\it dual-teaching} manner, in which the pseudo-labels for one task are constructed from the prediction of the other task. Moreover, based on the span prediction, an entity-aware regularization is proposed to enhance the intrinsic cross-lingual alignment between the same entities in different languages. Experiments and analysis demonstrate the effectiveness of our DualNER. Code is available at https://github.com/lemon0830/dualNER.
translated by 谷歌翻译
Contrastive learning has become a new paradigm for unsupervised sentence embeddings. Previous studies focus on instance-wise contrastive learning, attempting to construct positive pairs with textual data augmentation. In this paper, we propose a novel Contrastive learning method with Prompt-derived Virtual semantic Prototypes (ConPVP). Specifically, with the help of prompts, we construct virtual semantic prototypes to each instance, and derive negative prototypes by using the negative form of the prompts. Using a prototypical contrastive loss, we enforce the anchor sentence embedding to be close to its corresponding semantic prototypes, and far apart from the negative prototypes as well as the prototypes of other sentences. Extensive experimental results on semantic textual similarity, transfer, and clustering tasks demonstrate the effectiveness of our proposed model compared to strong baselines. Code is available at https://github.com/lemon0830/promptCSE.
translated by 谷歌翻译
大多数当前的多模式摘要方法遵循级联的方式,在该方式中,首先使用现成的对象检测器来提取视觉特征,然后将这些功能与语言表示融合在一起,以使用编码器模型生成摘要。级联的方式无法捕获图像和段落之间的语义一致性,这对于确切的摘要至关重要。在本文中,我们向vil-sum提出了段落级级\ textbf {vi} sion- \ textbf {l} arnguage语义对齐和多模式\ textbf {sum} marization。 VIL-SUM的核心是一个联合多模式编码器,具有两个精心设计的任务,图像重新排序和图像选择。联合多模式编码器捕获了模式之间的交互,重新排序任务指导该模型学习段落级别的语义对齐,而选择任务指导模型在最终摘要中将模型指向所选摘要相关的图像。实验结果表明,我们提出的VIL-SUM显着优于当前最新方法。在进一步的分析中,我们发现两个精心设计的任务和联合多模式编码器可以有效地指导模型学习合理的段落图像和摘要图像关系。
translated by 谷歌翻译
无监督的摘要方法通过纳入预训练的语言模型的表示形式来取得了显着的结果。但是,当输入文档非常长的同时,现有方法无法考虑效率和有效性。为了解决这个问题,在本文中,我们提出了一个基于语义块的无监督长期文档摘要,提议有效的粗到1个方面的排名(C2F-FAR)框架。语义块是指描述相同方面的文档中的连续句子。具体而言,我们通过将一步排名方法转换为层次多范围两阶段排名来解决此问题。在粗级阶段,我们提出了一种新的段算法,将文档拆分为相关的语义块,然后过滤量微不足道的块。在精细阶段,我们在每个块中选择显着句子,然后从选定的句子中提取最终摘要。我们在四个长文档摘要数据集上评估了我们的框架:Gov-Report,Billsum,Arxiv和PubMed。我们的C2F-FAR可以在Gov-Report和Billsum上实现新的无监督摘要结果。此外,我们的方法比以前的方法高4-28倍。
translated by 谷歌翻译
以人为本的人工智能考虑了人工智能表现的经验。尽管丰富的研究一直在通过全自动或弱监督学习来帮助AI实现超人类的表现,但较少的努力正在尝试AI如何量身定制人类对人类首选技能水平的限制。在这项工作中,我们指导课程加强学习结果朝着首选的绩效水平,通过从人类的决策过程中学习而不是太困难也不容易。为了实现这一目标,我们开发了一个便携式交互式平台,使用户能够通过操纵任务难度,观察性能并提供课程反馈来在线与代理商进行交互。我们的系统高度可行,使人类可以训练大规模的增强学习应用程序,这些学习应用需要数百万没有服务器的样品。结果证明了互动课程对涉及人类在环的增强学习的有效性。它显示强化学习绩效可以成功地与人类所需的难度水平同步调整。我们认为,这项研究将为实现流动和个性化的适应性困难打开新的大门。
translated by 谷歌翻译
Increasing research interests focus on sequential recommender systems, aiming to model dynamic sequence representation precisely. However, the most commonly used loss function in state-of-the-art sequential recommendation models has essential limitations. To name a few, Bayesian Personalized Ranking (BPR) loss suffers the vanishing gradient problem from numerous negative sampling and predictionbiases; Binary Cross-Entropy (BCE) loss subjects to negative sampling numbers, thereby it is likely to ignore valuable negative examples and reduce the training efficiency; Cross-Entropy (CE) loss only focuses on the last timestamp of the training sequence, which causes low utilization of sequence information and results in inferior user sequence representation. To avoid these limitations, in this paper, we propose to calculate Cumulative Cross-Entropy (CCE) loss over the sequence. CCE is simple and direct, which enjoys the virtues of painless deployment, no negative sampling, and effective and efficient training. We conduct extensive experiments on five benchmark datasets to demonstrate the effectiveness and efficiency of CCE. The results show that employing CCE loss on three state-of-the-art models GRU4Rec, SASRec, and S3-Rec can reach 125.63%, 69.90%, and 33.24% average improvement of full ranking NDCG@5, respectively. Using CCE, the performance curve of the models on the test data increases rapidly with the wall clock time, and is superior to that of other loss functions in almost the whole process of model training.
translated by 谷歌翻译
The node-place model has been widely used to classify and evaluate transit stations, which sheds light on individual travel behaviors and supports urban planning through effectively integrating land use and transportation development. This article adapts this model to investigate whether and how node, place, and mobility would be associated with the transmission risks and presences of the local COVID-19 cases in a city. Similar studies on the model and its relevance to COVID-19, according to our knowledge, have not been undertaken before. Moreover, the unique metric drawn from detailed visit history of the infected, i.e., the COVID-19 footprints, is proposed and exploited. This study then empirically uses the adapted model to examine the station-level factors affecting the local COVID-19 footprints. The model accounts for traditional measures of the node and place as well as actual human mobility patterns associated with the node and place. It finds that stations with high node, place, and human mobility indices normally have more COVID-19 footprints in proximity. A multivariate regression is fitted to see whether and to what degree different indices and indicators can predict the COVID-19 footprints. The results indicate that many of the place, node, and human mobility indicators significantly impact the concentration of COVID-19 footprints. These are useful for policy-makers to predict and monitor hotspots for COVID-19 and other pandemics transmission.
translated by 谷歌翻译
The utilization of large-scale distributed renewable energy promotes the development of the multi-microgrid (MMG), which raises the need of developing an effective energy management method to minimize economic costs and keep self energy-sufficiency. The multi-agent deep reinforcement learning (MADRL) has been widely used for the energy management problem because of its real-time scheduling ability. However, its training requires massive energy operation data of microgrids (MGs), while gathering these data from different MGs would threaten their privacy and data security. Therefore, this paper tackles this practical yet challenging issue by proposing a federated multi-agent deep reinforcement learning (F-MADRL) algorithm via the physics-informed reward. In this algorithm, the federated learning (FL) mechanism is introduced to train the F-MADRL algorithm thus ensures the privacy and the security of data. In addition, a decentralized MMG model is built, and the energy of each participated MG is managed by an agent, which aims to minimize economic costs and keep self energy-sufficiency according to the physics-informed reward. At first, MGs individually execute the self-training based on local energy operation data to train their local agent models. Then, these local models are periodically uploaded to a server and their parameters are aggregated to build a global agent, which will be broadcasted to MGs and replace their local agents. In this way, the experience of each MG agent can be shared and the energy operation data is not explicitly transmitted, thus protecting the privacy and ensuring data security. Finally, experiments are conducted on Oak Ridge national laboratory distributed energy control communication lab microgrid (ORNL-MG) test system, and the comparisons are carried out to verify the effectiveness of introducing the FL mechanism and the outperformance of our proposed F-MADRL.
translated by 谷歌翻译
This paper presents a safety-critical locomotion control framework for quadrupedal robots. Our goal is to enable quadrupedal robots to safely navigate in cluttered environments. To tackle this, we introduce exponential Discrete Control Barrier Functions (exponential DCBFs) with duality-based obstacle avoidance constraints into a Nonlinear Model Predictive Control (NMPC) with Whole-Body Control (WBC) framework for quadrupedal locomotion control. This enables us to use polytopes to describe the shapes of the robot and obstacles for collision avoidance while doing locomotion control of quadrupedal robots. Compared to most prior work, especially using CBFs, that utilize spherical and conservative approximation for obstacle avoidance, this work demonstrates a quadrupedal robot autonomously and safely navigating through very tight spaces in the real world. (Our open-source code is available at github.com/HybridRobotics/quadruped_nmpc_dcbf_duality, and the video is available at youtu.be/p1gSQjwXm1Q.)
translated by 谷歌翻译
Three-dimensional (3D) ultrasound imaging technique has been applied for scoliosis assessment, but current assessment method only uses coronal projection image and cannot illustrate the 3D deformity and vertebra rotation. The vertebra detection is essential to reveal 3D spine information, but the detection task is challenging due to complex data and limited annotations. We propose VertMatch, a two-step framework to detect vertebral structures in 3D ultrasound volume by utilizing unlabeled data in semi-supervised manner. The first step is to detect the possible positions of structures on transverse slice globally, and then the local patches are cropped based on detected positions. The second step is to distinguish whether the patches contain real vertebral structures and screen the predicted positions from the first step. VertMatch develops three novel components for semi-supervised learning: for position detection in the first step, (1) anatomical prior is used to screen pseudo labels generated from confidence threshold method; (2) multi-slice consistency is used to utilize more unlabeled data by inputting multiple adjacent slices; (3) for patch identification in the second step, the categories are rebalanced in each batch to solve imbalance problem. Experimental results demonstrate that VertMatch can detect vertebra accurately in ultrasound volume and outperforms state-of-the-art methods. VertMatch is also validated in clinical application on forty ultrasound scans, and it can be a promising approach for 3D assessment of scoliosis.
translated by 谷歌翻译